
An Introduction to HPC — Exercises

Stuart Rankin
sjr20@cam.ac.uk

Research Computing Services (http://www.hpc.cam.ac.uk/)
University Information Services (http://www.uis.cam.ac.uk/)

21st November 2019 / UIS Training



Exercise 1: Login

I Log into your RCS training account.

Hints: Create a terminal window and use ssh to login to your
cluster training account.

The remote host is login.hpc.cam.ac.uk. The user name is
the same name as your MCS Desktop training account
(i.e. z4XY).

N.B. If in doubt about the name of your training account, check the

number of your station (see the label on the top of the box), then

station 1XY should correspond to account z4XY.

2 of 12



Exercise 2: Simple command line operations

(a) List your current directory (folder) using ls -al. Use df -h to see
the various cluster filesystems, their sizes and their current total
usages. You will be on a random login node – use hostname to
confirm which one, and w to find out who else is using it. Use
lstopo to find out more about the internal structure of the login
node.

(b) Examine your personal filesystem quotas with the command quota.

You should see a 40GB quota on /home, a 1TB
block and 1024k file quota on /rds-d2 (which
corresponds to /̃rds/hpc-work).

(c) Ask the scheduler what compute resources are available to you
with mybalance. This command may take a little while to return
(the units are CPU/GPU/KNL hours).

3 of 12



Exercise 2: Simple command line operations

(a) List your current directory (folder) using ls -al. Use df -h to see
the various cluster filesystems, their sizes and their current total
usages. You will be on a random login node – use hostname to
confirm which one, and w to find out who else is using it. Use
lstopo to find out more about the internal structure of the login
node.

(b) Examine your personal filesystem quotas with the command quota.

You should see a 40GB quota on /home, a 1TB
block and 1024k file quota on /rds-d2 (which
corresponds to /̃rds/hpc-work).

(c) Ask the scheduler what compute resources are available to you
with mybalance. This command may take a little while to return
(the units are CPU/GPU/KNL hours).

3 of 12



Exercise 3: File transfer

I Use SFTP to transfer the file exercises.tgz to your Research
Computing Service training account directory /̃rds/hpc-work.

Hints: The command is sftp. Use the same remote host,
username and password as in the previous exercise.

Use cd rds/hpc-work to change the target directory, then

put exercises.tgz to transfer the file from your MCS home

directory to the target directory on the Research

Computing Service cluster. Use quit to close the

connection.

Optionally, copy the file over again using rsync.

4 of 12



Exercise 3: File transfer

I Use SFTP to transfer the file exercises.tgz to your Research
Computing Service training account directory /̃rds/hpc-work.

Hints: The command is sftp. Use the same remote host,
username and password as in the previous exercise.

Use cd rds/hpc-work to change the target directory, then

put exercises.tgz to transfer the file from your MCS home

directory to the target directory on the Research

Computing Service cluster. Use quit to close the

connection.

Optionally, copy the file over again using rsync.

4 of 12



Exercise 3: File transfer (ctd)

I Switch back to the SSH session you created in the previous
exercise. Verify that the file is now present by using ls.

Hints: Do ls -al /̃rds/hpc-work/. Note that you can often
reduce typing by pressing TAB.

I Unpack the tar archive to create an exercise subdirectory.

Hints: Do cd /̃rds/hpc-work/ then tar -zxvf exercises.tgz.

5 of 12



Exercise 3: File transfer (ctd)

I Switch back to the SSH session you created in the previous
exercise. Verify that the file is now present by using ls.

Hints: Do ls -al /̃rds/hpc-work/. Note that you can often
reduce typing by pressing TAB.

I Unpack the tar archive to create an exercise subdirectory.

Hints: Do cd /̃rds/hpc-work/ then tar -zxvf exercises.tgz.

5 of 12



Exercise 3: File transfer (ctd)

I Switch back to the SSH session you created in the previous
exercise. Verify that the file is now present by using ls.

Hints: Do ls -al /̃rds/hpc-work/. Note that you can often
reduce typing by pressing TAB.

I Unpack the tar archive to create an exercise subdirectory.

Hints: Do cd /̃rds/hpc-work/ then tar -zxvf exercises.tgz.

5 of 12



Exercise 4: Remote desktop

I Using TurboVNC, connect to the remote desktop running on
login-gfx2.hpc.cam.ac.uk on display :99. The command is
˜/bin/turbovncviewer (note that the vncviewer command provides
a different version) and the VNC password is “trAin99”.

Hints: Because the RCS clusters only allow SSH connections, to
use VNC we need to tunnel via SSH.

Use localhost:99 as the remote display name.

Use -via USER@login-gfx2.hpc.cam.ac.uk to specify the
gateway server, with your training account ID as USER.

You should be prompted first for your training account

password, then for the VNC password which is “trAin99”.

Note that this is a view-only password.

6 of 12



Exercise 4: Remote desktop

I Using TurboVNC, connect to the remote desktop running on
login-gfx2.hpc.cam.ac.uk on display :99. The command is
˜/bin/turbovncviewer (note that the vncviewer command provides
a different version) and the VNC password is “trAin99”.

Hints: Because the RCS clusters only allow SSH connections, to
use VNC we need to tunnel via SSH.

Use localhost:99 as the remote display name.

Use -via USER@login-gfx2.hpc.cam.ac.uk to specify the
gateway server, with your training account ID as USER.

You should be prompted first for your training account

password, then for the VNC password which is “trAin99”.

Note that this is a view-only password.

6 of 12



Exercise 5: Modules and Compilers

I Go to the exercises directory of your cluster account.

Hints: Firstly you may need to review Exercise 1 in order to

reconnect to your cluster account. At the remote

command prompt, change to the exercises directory (cd

/̃rds/hpc-work/exercises).

I Try to compile the hello.c program using the default gcc compiler
(it will fail because there is a deliberate bug).

Hints: gcc hello.c -o hello

I To fix the problem, open the hello.c file in an editor (e.g. gedit,
nano, emacs).

Hints: Launch gedit in the background by doing gedit&. A gedit

window should appear. Remove the word BUG, save the

file and recompile. Do ./hello to run the program.

7 of 12



Exercise 5: Modules and Compilers

I Go to the exercises directory of your cluster account.

Hints: Firstly you may need to review Exercise 1 in order to

reconnect to your cluster account. At the remote

command prompt, change to the exercises directory (cd

/̃rds/hpc-work/exercises).

I Try to compile the hello.c program using the default gcc compiler
(it will fail because there is a deliberate bug).

Hints: gcc hello.c -o hello

I To fix the problem, open the hello.c file in an editor (e.g. gedit,
nano, emacs).

Hints: Launch gedit in the background by doing gedit&. A gedit

window should appear. Remove the word BUG, save the

file and recompile. Do ./hello to run the program.

7 of 12



Exercise 5: Modules and Compilers

I Go to the exercises directory of your cluster account.

Hints: Firstly you may need to review Exercise 1 in order to

reconnect to your cluster account. At the remote

command prompt, change to the exercises directory (cd

/̃rds/hpc-work/exercises).

I Try to compile the hello.c program using the default gcc compiler
(it will fail because there is a deliberate bug).

Hints: gcc hello.c -o hello

I To fix the problem, open the hello.c file in an editor (e.g. gedit,
nano, emacs).

Hints: Launch gedit in the background by doing gedit&. A gedit

window should appear. Remove the word BUG, save the

file and recompile. Do ./hello to run the program.

7 of 12



Exercise 5: Modules and Compilers

I Go to the exercises directory of your cluster account.

Hints: Firstly you may need to review Exercise 1 in order to

reconnect to your cluster account. At the remote

command prompt, change to the exercises directory (cd

/̃rds/hpc-work/exercises).

I Try to compile the hello.c program using the default gcc compiler
(it will fail because there is a deliberate bug).

Hints: gcc hello.c -o hello

I To fix the problem, open the hello.c file in an editor (e.g. gedit,
nano, emacs).

Hints: Launch gedit in the background by doing gedit&. A gedit

window should appear. Remove the word BUG, save the

file and recompile. Do ./hello to run the program.

7 of 12



Exercise 5: Modules and Compilers (ctd)

I The default version of gcc on the RCS HPC clusters is 4.8.5.
Compile hello.c again with gcc 5.4.0.

Hints: module av, module load, then gcc hello.c -o hello2

I Launch the Matlab GUI. Note this should work from either the
SSH command-line or remote desktop sessions.

Hints: module load matlab then run: matlab&

I Quit Matlab and launch it again without the graphical desktop
interface. This is the way to launch it inside a batch job.

Hints: matlab -nodisplay -nojvm -nosplash

8 of 12



Exercise 5: Modules and Compilers (ctd)

I The default version of gcc on the RCS HPC clusters is 4.8.5.
Compile hello.c again with gcc 5.4.0.

Hints: module av, module load, then gcc hello.c -o hello2

I Launch the Matlab GUI. Note this should work from either the
SSH command-line or remote desktop sessions.

Hints: module load matlab then run: matlab&

I Quit Matlab and launch it again without the graphical desktop
interface. This is the way to launch it inside a batch job.

Hints: matlab -nodisplay -nojvm -nosplash

8 of 12



Exercise 5: Modules and Compilers (ctd)

I The default version of gcc on the RCS HPC clusters is 4.8.5.
Compile hello.c again with gcc 5.4.0.

Hints: module av, module load, then gcc hello.c -o hello2

I Launch the Matlab GUI. Note this should work from either the
SSH command-line or remote desktop sessions.

Hints: module load matlab then run: matlab&

I Quit Matlab and launch it again without the graphical desktop
interface. This is the way to launch it inside a batch job.

Hints: matlab -nodisplay -nojvm -nosplash

8 of 12



Exercise 5: Modules and Compilers (ctd)

I The default version of gcc on the RCS HPC clusters is 4.8.5.
Compile hello.c again with gcc 5.4.0.

Hints: module av, module load, then gcc hello.c -o hello2

I Launch the Matlab GUI. Note this should work from either the
SSH command-line or remote desktop sessions.

Hints: module load matlab then run: matlab&

I Quit Matlab and launch it again without the graphical desktop
interface. This is the way to launch it inside a batch job.

Hints: matlab -nodisplay -nojvm -nosplash

8 of 12



Exercise 6: Submitting Jobs (Matlab)

I Submit a job which will run matlab on the file.m command file
(which contains just the Matlab ver command).

Hints: 1. Load the matlab module at the place indicated in
the file job script in your exercises directory.

2. Set the value of application to
¨matlab -nodesktop -nosplash -nojvm¨

3. Set the value of options to ¨-r file¨
4. Submit the job with sbatch job script. The jobid is

then printed.
5. Watch the job in the queue with squeue.
6. After it has disappeared, open the output file

slurm-jobid.out in your editor. It should contain a list
of licensed Matlab features from the ver command.

7. For more demanding work you can increase the
available memory by increasing the number of cpus.

9 of 12



Exercise 6: Submitting Jobs (Matlab)

I Submit a job which will run matlab on the file.m command file
(which contains just the Matlab ver command).

Hints: 1. Load the matlab module at the place indicated in
the file job script in your exercises directory.

2. Set the value of application to
¨matlab -nodesktop -nosplash -nojvm¨

3. Set the value of options to ¨-r file¨
4. Submit the job with sbatch job script. The jobid is

then printed.
5. Watch the job in the queue with squeue.
6. After it has disappeared, open the output file

slurm-jobid.out in your editor. It should contain a list
of licensed Matlab features from the ver command.

7. For more demanding work you can increase the
available memory by increasing the number of cpus.

9 of 12



Exercise 7: Submitting Jobs (serial or threaded
application)

I Submit a job which will run a copy of your hello program on 1 cpu.

Hints: 1. Edit the script job script in your exercises directory.
Set:
#SBATCH –nodes=1
#SBATCH –ntasks=1
application=”./hello”

2. Submit the job with sbatch job script. The jobid is
then printed.

3. Watch the job in the queue with squeue.
4. After it has disappeared, open the output file

slurm-jobid.out in your editor. There should be
exactly one “Hello, World!” message.

Experiment with varying the number of nodes and tasks (you are
limited to 4 nodes). Note you will need to launch the application
with srun to actually use more than 1 cpu.

10 of 12



Exercise 7: Submitting Jobs (serial or threaded
application)

I Submit a job which will run a copy of your hello program on 1 cpu.

Hints: 1. Edit the script job script in your exercises directory.
Set:
#SBATCH –nodes=1
#SBATCH –ntasks=1
application=”./hello”

2. Submit the job with sbatch job script. The jobid is
then printed.

3. Watch the job in the queue with squeue.
4. After it has disappeared, open the output file

slurm-jobid.out in your editor. There should be
exactly one “Hello, World!” message.

Experiment with varying the number of nodes and tasks (you are
limited to 4 nodes). Note you will need to launch the application
with srun to actually use more than 1 cpu.

10 of 12



Exercise 8: Submitting Jobs (R)

I R jobs may be serial, threaded, or even MPI parallel depending on
the packages used. Submit a job which will run the trivial script
hello.r program on 1 cpu.

Hints: 1. Edit the script job script in your exercises directory.
Set:
#SBATCH –nodes=1
#SBATCH –ntasks=1
application=”Rscript”
options=”hello.r”

2. Submit the job with sbatch job script. The jobid is
then printed.

I Repeat this using a different version of R.

11 of 12



Exercise 8: Submitting Jobs (R)

I R jobs may be serial, threaded, or even MPI parallel depending on
the packages used. Submit a job which will run the trivial script
hello.r program on 1 cpu.

Hints: 1. Edit the script job script in your exercises directory.
Set:
#SBATCH –nodes=1
#SBATCH –ntasks=1
application=”Rscript”
options=”hello.r”

2. Submit the job with sbatch job script. The jobid is
then printed.

I Repeat this using a different version of R.

11 of 12



Exercise 9: Array Jobs

I Submit your last job in the form of an array with indices 1-64. Use
-H with sbatch to mark the array as held (so that it won’t run
immediately).

Hints: 1. Use sbatch -H --array=1-64 job script
2. Use squeue -u userid to see your array job. Note

that -r reports each array element individually.

I Release array element 1 and allow it to run. Then release the
others.

Hints: 1. Use scontrol release ${SLURM ARRAY JOB ID} 1
2. Use squeue -u userid again to watch what happens.
3. Release the others with

scontrol release ${SLURM ARRAY JOB ID}
i.e. use the array id to release the entire array.

4. When all the jobs complete you should have 64
slurm-${SLURM ARRAY JOB ID} N.out files saying
hello from various cpus on possibly multiple nodes.

12 of 12



Exercise 9: Array Jobs

I Submit your last job in the form of an array with indices 1-64. Use
-H with sbatch to mark the array as held (so that it won’t run
immediately).

Hints: 1. Use sbatch -H --array=1-64 job script
2. Use squeue -u userid to see your array job. Note

that -r reports each array element individually.

I Release array element 1 and allow it to run. Then release the
others.

Hints: 1. Use scontrol release ${SLURM ARRAY JOB ID} 1
2. Use squeue -u userid again to watch what happens.
3. Release the others with

scontrol release ${SLURM ARRAY JOB ID}
i.e. use the array id to release the entire array.

4. When all the jobs complete you should have 64
slurm-${SLURM ARRAY JOB ID} N.out files saying
hello from various cpus on possibly multiple nodes.

12 of 12



Exercise 9: Array Jobs

I Submit your last job in the form of an array with indices 1-64. Use
-H with sbatch to mark the array as held (so that it won’t run
immediately).

Hints: 1. Use sbatch -H --array=1-64 job script
2. Use squeue -u userid to see your array job. Note

that -r reports each array element individually.

I Release array element 1 and allow it to run. Then release the
others.

Hints: 1. Use scontrol release ${SLURM ARRAY JOB ID} 1
2. Use squeue -u userid again to watch what happens.
3. Release the others with

scontrol release ${SLURM ARRAY JOB ID}
i.e. use the array id to release the entire array.

4. When all the jobs complete you should have 64
slurm-${SLURM ARRAY JOB ID} N.out files saying
hello from various cpus on possibly multiple nodes.

12 of 12


	Login
	Simple command line operations
	File transfer
	File transfer
	Remote desktop
	Modules and Compilers
	Submitting Jobs
	Array Jobs

